Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2315597121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687786

RESUMO

Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The venom of African spitting cobras often causes permanent injury via tissue-destructive dermonecrosis at the bite site, which is ineffectively treated by current antivenoms. To address this therapeutic gap, we identified the etiological venom toxins in Naja nigricollis venom responsible for causing local dermonecrosis. While cytotoxic three-finger toxins were primarily responsible for causing spitting cobra cytotoxicity in cultured keratinocytes, their potentiation by phospholipases A2 toxins was essential to cause dermonecrosis in vivo. This evidence of probable toxin synergism suggests that a single toxin-family inhibiting drug could prevent local envenoming. We show that local injection with the repurposed phospholipase A2-inhibiting drug varespladib significantly prevents local tissue damage caused by several spitting cobra venoms in murine models of envenoming. Our findings therefore provide a therapeutic strategy that may effectively prevent life-changing morbidity caused by snakebite in rural Africa.


Assuntos
Acetatos , Venenos Elapídicos , Indóis , Cetoácidos , Necrose , Mordeduras de Serpentes , Animais , Mordeduras de Serpentes/tratamento farmacológico , Camundongos , Humanos , Acrilamidas/farmacologia , Fosfolipases A2/metabolismo , Naja , Elapidae , Queratinócitos/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/patologia , Reposicionamento de Medicamentos
2.
Mol Cell Proteomics ; : 100779, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679388

RESUMO

New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation, and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide. Energetics-based proteomic approaches, including Thermal Proteome Profiling (TPP) and Proteome Integral Solubility Alteration (PISA) assays, represent "deep proteomics" methods for high throughput, proteome-wide identification of drug targets and ligands. In the following study, we apply TPP and PISA methods to characterize the interactions between venom toxin proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects and characterize its interactions with specific SVMP proteoforms, as well as its potential targeting of non-SVMP venom toxin families. We also compare the performance of PISA thermal window and soluble supernatant with insoluble precipitate using two inhibitor concentrations, providing the first demonstration of the utility of a sensitive high-throughput PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom.

3.
Toxins (Basel) ; 16(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38668606

RESUMO

This study provides a new methodology for the rapid analysis of numerous venom samples in an automated fashion. Here, we use LC-MS (Liquid Chromatography-Mass Spectrometry) for venom separation and toxin analysis at the accurate mass level combined with new in-house written bioinformatic scripts to obtain high-throughput results. This analytical methodology was validated using 31 venoms from all members of a monophyletic clade of Australian elapids: brown snakes (Pseudonaja spp.) and taipans (Oxyuranus spp.). In a previous study, we revealed extensive venom variation within this clade, but the data was manually processed and MS peaks were integrated into a time-consuming and labour-intensive approach. By comparing the manual approach to our new automated approach, we now present a faster and more efficient pipeline for analysing venom variation. Pooled venom separations with post-column toxin fractionations were performed for subsequent high-throughput venomics to obtain toxin IDs correlating to accurate masses for all fractionated toxins. This workflow adds another dimension to the field of venom analysis by providing opportunities to rapidly perform in-depth studies on venom variation. Our pipeline opens new possibilities for studying animal venoms as evolutionary model systems and investigating venom variation to aid in the development of better antivenoms.


Assuntos
Biologia Computacional , Venenos Elapídicos , Animais , Venenos Elapídicos/química , Venenos Elapídicos/análise , Elapidae , Espectrometria de Massa com Cromatografia Líquida
5.
BMC Genomics ; 25(1): 186, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365592

RESUMO

BACKGROUND: Venom systems are ideal models to study genetic regulatory mechanisms that underpin evolutionary novelty. Snake venom glands are thought to share a common origin, but there are major distinctions between venom toxins from the medically significant snake families Elapidae and Viperidae, and toxin gene regulatory investigations in elapid snakes have been limited. Here, we used high-throughput RNA-sequencing to profile gene expression and microRNAs between active (milked) and resting (unmilked) venom glands in an elapid (Eastern Brown Snake, Pseudonaja textilis), in addition to comparative genomics, to identify cis- and trans-acting regulation of venom production in an elapid in comparison to viperids (Crotalus viridis and C. tigris). RESULTS: Although there is conservation in high-level mechanistic pathways regulating venom production (unfolded protein response, Notch signaling and cholesterol homeostasis), there are differences in the regulation of histone methylation enzymes, transcription factors, and microRNAs in venom glands from these two snake families. Histone methyltransferases and transcription factor (TF) specificity protein 1 (Sp1) were highly upregulated in the milked elapid venom gland in comparison to the viperids, whereas nuclear factor I (NFI) TFs were upregulated after viperid venom milking. Sp1 and NFI cis-regulatory elements were common to toxin gene promoter regions, but many unique elements were also present between elapid and viperid toxins. The presence of Sp1 binding sites across multiple elapid toxin gene promoter regions that have been experimentally determined to regulate expression, in addition to upregulation of Sp1 after venom milking, suggests this transcription factor is involved in elapid toxin expression. microRNA profiles were distinctive between milked and unmilked venom glands for both snake families, and microRNAs were predicted to target a diversity of toxin transcripts in the elapid P. textilis venom gland, but only snake venom metalloproteinase transcripts in the viperid C. viridis venom gland. These results suggest differences in toxin gene posttranscriptional regulation between the elapid P. textilis and viperid C. viridis. CONCLUSIONS: Our comparative transcriptomic and genomic analyses between toxin genes and isoforms in elapid and viperid snakes suggests independent toxin regulation between these two snake families, demonstrating multiple different regulatory mechanisms underpin a venomous phenotype.


Assuntos
Crotalus , MicroRNAs , Toxinas Biológicas , Serpentes Peçonhentas , Viperidae , Humanos , Animais , Elapidae/genética , Venenos de Serpentes/química , Venenos de Serpentes/genética , Venenos de Serpentes/metabolismo , Venenos Elapídicos/química , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Viperidae/genética , Viperidae/metabolismo , Transcriptoma , Fatores de Transcrição/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338961

RESUMO

Aedes aegypti is a major vector that transmits arboviruses through the saliva injected into the host. Salivary proteins help in uninterrupted blood intake and enhance the transmission of pathogens. We studied Niemann-Pick Type C2 (NPC2) proteins, a superfamily of saliva proteins that play an important role in arbovirus infections. In vertebrates, a single conserved gene encodes for the NPC2 protein that functions in cholesterol trafficking. Arthropods, in contrast, have several genes that encode divergent NPC2 proteins. We compared the sequences of 20 A. aegypti NPC2 proteins to the cholesterol-binding residues of human and bovine, and fatty-acid-binding residues of ant NPC2 protein. We identified four mosquito NPC2 proteins as potential sterol-binding proteins. Two of these proteins (AAEL006854 and/or AAEL020314) may play a key role in ecdysteroid biosynthesis and moulting. We also identified one mosquito NPC2 protein as a potential fatty-acid-binding protein. Through molecular modelling, we predicted the structures of the potential sterol- and fatty-acid-binding proteins and compared them to the reference proteins.


Assuntos
Aedes , Animais , Bovinos , Humanos , Aedes/metabolismo , Glicoproteínas/metabolismo , Proteínas de Transporte Vesicular , Mosquitos Vetores , Colesterol/metabolismo , Esteróis/química , Relação Estrutura-Atividade
7.
Sci Rep ; 13(1): 11271, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438463

RESUMO

Dengue (DENV) and chikungunya (CHIKV) viruses are among the most preponderant arboviruses. Although primarily transmitted through the bite of Aedes aegypti mosquitoes, Aedes albopictus and Aedes malayensis are competent vectors and have an impact on arbovirus epidemiology. Here, to fill the gap in our understanding of the molecular interactions between secondary vectors and arboviruses, we used transcriptomics to profile the whole-genome responses of A. albopictus to CHIKV and of A. malayensis to CHIKV and DENV at 1 and 4 days post-infection (dpi) in midguts. In A. albopictus, 1793 and 339 genes were significantly regulated by CHIKV at 1 and 4 dpi, respectively. In A. malayensis, 943 and 222 genes upon CHIKV infection, and 74 and 69 genes upon DENV infection were significantly regulated at 1 and 4 dpi, respectively. We reported 81 genes that were consistently differentially regulated in all the CHIKV-infected conditions, identifying a CHIKV-induced signature. We identified expressed immune genes in both mosquito species, using a de novo assembled midgut transcriptome for A. malayensis, and described the immune architectures. We found the JNK pathway activated in all conditions, generalizing its antiviral function to Aedines. Our comprehensive study provides insight into arbovirus transmission by multiple Aedes vectors.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Dengue , Animais , Transcriptoma , Aedes/genética , Vírus Chikungunya/genética , Febre de Chikungunya/genética , Mosquitos Vetores/genética , Dengue/genética
8.
Toxins (Basel) ; 15(1)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36668892

RESUMO

Snake venoms are complex mixtures of toxins that differ on interspecific (between species) and intraspecific (within species) levels. Whether venom variation within a group of closely related species is explained by the presence, absence and/or relative abundances of venom toxins remains largely unknown. Taipans (Oxyuranus spp.) and brown snakes (Pseudonaja spp.) represent medically relevant species of snakes across the Australasian region and provide an excellent model clade for studying interspecific and intraspecific venom variation. Using liquid chromatography with ultraviolet and mass spectrometry detection, we analyzed a total of 31 venoms covering all species of this monophyletic clade, including widespread localities. Our results reveal major interspecific and intraspecific venom variation in Oxyuranus and Pseudonaja species, partially corresponding with their geographical regions and phylogenetic relationships. This extensive venom variability is generated by a combination of the absence/presence and differential abundance of venom toxins. Our study highlights that venom systems can be highly dynamical on the interspecific and intraspecific levels and underscores that the rapid toxin evolvability potentially causes major impacts on neglected tropical snakebites.


Assuntos
Mordeduras de Serpentes , Toxinas Biológicas , Animais , Venenos Elapídicos/genética , Filogenia , Elapidae/genética , Venenos de Serpentes , Serpentes , Antivenenos
9.
Am J Trop Med Hyg ; 106(3): 900-904, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35008057

RESUMO

Successful completion of the dengue virus (DENV) life cycle in its mosquito vectors is important for efficient human-mosquito-human cycle of transmission, but the virus-mosquito interactions that underpin this critical event are poorly defined. To understand the virus-host interactions that determine viral infection by Aedes aegypti, the principal DENV vector, the authors compared transcriptomic changes in the head/thorax of the mosquito after intrathoracic infection with the wild-type DENV2 16681 strain and its attenuated derivative, PDK53. Using high-throughput RNA-sequencing, the authors identified 1,629 differentially expressed genes (DEGs) during 16681 infection, compared with only 22 DEGs identified during PDK53 infection, indicating that 16681 infection triggers a more robust host transcriptomic response compared with PDK53 infection. The authors further found that 16681 infection, but not PDK53 infection, altered metabolism in these heads/thoraces. Altogether, our findings reveal differential regulation of metabolic processes during wild-type and attenuated DENV infection, and suggest the need for future work to study the role of metabolic processes in determining DENV infection and replication in its mosquito vectors.


Assuntos
Aedes , Vírus da Dengue , Dengue , Aedes/genética , Animais , Vírus da Dengue/genética , Humanos , Mosquitos Vetores/genética , Transcriptoma
10.
Sci Rep ; 11(1): 23696, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880409

RESUMO

Arboviruses such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses infect close to half a billion people per year, and are primarily transmitted through Aedes aegypti bites. Infection-induced changes in mosquito salivary glands (SG) influence transmission by inducing antiviral immunity, which restricts virus replication in the vector, and by altering saliva composition, which influences skin infection. Here, we profiled SG proteome responses to DENV serotype 2 (DENV2), ZIKV and CHIKV infections by using high-resolution isobaric-tagged quantitative proteomics. We identified 218 proteins with putative functions in immunity, blood-feeding or related to the cellular machinery. We observed that 58, 27 and 29 proteins were regulated by DENV2, ZIKV and CHIKV infections, respectively. While the regulation patterns were mostly virus-specific, we separately depleted four uncharacterized proteins that were upregulated by all three viral infections to determine their effects on these viral infections. Our study suggests that gamma-interferon responsive lysosomal thiol-like (GILT-like) has an anti-ZIKV effect, adenosine deaminase (ADA) has an anti-CHIKV effect, salivary gland surface protein 1 (SGS1) has a pro-ZIKV effect and salivary gland broad-spectrum antiviral protein (SGBAP) has an antiviral effect against all three viruses. The comprehensive description of SG responses to three global pathogenic viruses and the identification of new restriction factors improves our understanding of the molecular mechanisms influencing transmission.


Assuntos
Aedes/fisiologia , Aedes/virologia , Vírus Chikungunya/imunologia , Vírus da Dengue/imunologia , Interações Hospedeiro-Patógeno/imunologia , Glândulas Salivares/fisiologia , Glândulas Salivares/virologia , Zika virus/imunologia , Aedes/classificação , Animais , Cromatografia Líquida , Biologia Computacional/métodos , Resistência à Doença , Feminino , Filogenia , Proteômica/métodos , Espectrometria de Massas em Tandem
11.
Expert Rev Proteomics ; 18(10): 827-834, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34663159

RESUMO

INTRODUCTION: Snake venoms contain many protein and peptide isoforms with high levels of sequence variation, even within a single species. AREAS COVERED: In this review, we highlight several examples, from both published and unpublished work in our lab, demonstrating how a combined venom gland transcriptome and proteome methodology allows for comprehensive characterization of venoms, including those from understudied rear-fanged snake species, and we provide recommendations for using these approaches. EXPERT OPINION: When characterizing venoms, peptide mass fingerprinting using databases built predominately from protein sequences originating from model organisms can be disadvantageous, especially when the intention is to document protein diversity. Therefore, the use of species-specific venom gland transcriptomes corrects for the absence of these unique peptide sequences in databases. The integration of transcriptomics and proteomics improves the accuracy of either approach alone for venom profiling.


Assuntos
Colubridae , Transcriptoma , Animais , Colubridae/genética , Humanos , Proteoma , Proteômica , Venenos de Serpentes
12.
Nucleic Acids Res ; 49(17): 10034-10045, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34428287

RESUMO

Quaking (QKI) controls RNA metabolism in many biological processes including innate immunity, where its roles remain incompletely understood. To illuminate these roles, we performed genome scale transcriptome profiling in QKI knockout cells with or without poly(I:C) transfection, a double-stranded RNA analog that mimics viral infection. Analysis of RNA-sequencing data shows that QKI knockout upregulates genes induced by interferons, suggesting that QKI is an immune suppressor. Furthermore, differential splicing analysis shows that QKI primarily controls cassette exons, and among these events, we noted that QKI silences splicing of the extra domain A (EDA) exon in fibronectin (FN1) transcripts. QKI knockout results in elevated production and secretion of FN1-EDA protein, which is a known activator of interferons. Consistent with an upregulation of the interferon response in QKI knockout cells, our results show reduced production of dengue virus-2 and Japanese encephalitis virus in these cells. In conclusion, we demonstrate that QKI downregulates the interferon system and attenuates the antiviral state.


Assuntos
Vírus da Dengue/crescimento & desenvolvimento , Vírus da Encefalite Japonesa (Espécie)/crescimento & desenvolvimento , Fibronectinas/genética , Interferon Tipo I/imunologia , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células A549 , Linhagem Celular Tumoral , Vírus da Dengue/imunologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Perfilação da Expressão Gênica , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferon Tipo I/genética , Poli I-C/imunologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Transcriptoma/genética , Regulação para Cima/genética
13.
PLoS Pathog ; 16(8): e1008754, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776975

RESUMO

Arbovirus infection of Aedes aegypti salivary glands (SGs) determines transmission. However, there is a dearth of knowledge on SG immunity. Here, we characterized SG immune response to dengue, Zika and chikungunya viruses using high-throughput transcriptomics. We also describe a transcriptomic response associated to apoptosis, blood-feeding and lipid metabolism. The three viruses differentially regulate components of Toll, Immune deficiency (IMD) and c-Jun N- terminal Kinase (JNK) pathways. However, silencing of the Toll and IMD pathway components showed variable effects on SG infection by each virus. In contrast, regulation of the JNK pathway produced consistent responses in both SGs and midgut. Infection by the three viruses increased with depletion of the activator Kayak and decreased with depletion of the negative regulator Puckered. Virus-induced JNK pathway regulates the complement factor, Thioester containing protein-20 (TEP20), and the apoptosis activator, Dronc, in SGs. Individual and co-silencing of these genes demonstrate their antiviral effects and that both may function together. Co-silencing either TEP20 or Dronc with Puckered annihilates JNK pathway antiviral effect. Upon infection in SGs, TEP20 induces antimicrobial peptides (AMPs), while Dronc is required for apoptosis independently of TEP20. In conclusion, we revealed the broad antiviral function of JNK pathway in SGs and showed that it is mediated by a TEP20 complement and Dronc-induced apoptosis response. These results expand our understanding of the immune arsenal that blocks arbovirus transmission.


Assuntos
Aedes/imunologia , Apoptose , Febre de Chikungunya/imunologia , Proteínas do Sistema Complemento/imunologia , Dengue/imunologia , Sistema de Sinalização das MAP Quinases , Glândulas Salivares/imunologia , Infecção por Zika virus/imunologia , Aedes/virologia , Animais , Febre de Chikungunya/metabolismo , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Proteínas do Sistema Complemento/metabolismo , Dengue/metabolismo , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/imunologia , Feminino , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/imunologia , Insetos Vetores/virologia , Glândulas Salivares/virologia , Transcriptoma , Replicação Viral , Zika virus/imunologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-32194156

RESUMO

The genera Ophiophagus and Naja comprise part of a clade of snakes referred to as cobras, dangerously venomous front-fanged snakes in the family Elapidae responsible for significant human mortality and morbidity throughout Asia and Africa. We evaluated venom enzyme variation for eleven cobra species and three N. kaouthia populations using SDS-PAGE venom fingerprinting and numerous enzyme assays. Acetylcholinesterase and PLA2 activities were the most variable between species, and PLA2 activity was significantly different between Malaysian and Thailand N. kaouthia populations. Venom metalloproteinase activity was low and significantly different among most species, but levels were identical for N. kaouthia populations; minor variation in venom L-amino acid oxidase and phosphodiesterase activities were seen between cobra species. Naja siamensis venom lacked the α-fibrinogenolytic activity common to other cobra venoms. In addition, venom from N. siamensis had no detectable metalloproteinase activity and exhibited an SDS-PAGE profile with reduced abundance of higher mass proteins. Venom profiles from spitting cobras (N. siamensis, N. pallida, and N. mossambica) exhibited similar reductions in higher mass proteins, suggesting the evolution of venoms of reduced complexity and decreased enzymatic activity among spitting cobras. Generally, the venom proteomes of cobras show highly abundant three-finger toxin diversity, followed by large quantities of PLA2s. However, PLA2 bands and activity were very reduced for N. haje, N. annulifera and N. nivea. Venom compositionalenzy analysis provides insight into the evolution, diversification and distribution of different venom phenotypes that complements venomic data, and this information is critical for the development of effective antivenoms and snakebite treatment.


Assuntos
Acetilcolinesterase/metabolismo , Antivenenos/metabolismo , Venenos Elapídicos/enzimologia , Elapidae/metabolismo , Fosfolipases A2/metabolismo , Proteoma/metabolismo , África , Animais , Ásia , Venenos Elapídicos/toxicidade , Elapidae/classificação , Especificidade da Espécie
15.
Toxins (Basel) ; 12(3)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178374

RESUMO

The CAP protein superfamily (Cysteine-rich secretory proteins (CRISPs), Antigen 5 (Ag5), and Pathogenesis-related 1 (PR-1) proteins) is widely distributed, but for toxinologists, snake venom CRISPs are the most familiar members. Although CRISPs are found in the majority of venoms, very few of these proteins have been functionally characterized, but those that have been exhibit diverse activities. Snake venom CRISPs (svCRISPs) inhibit ion channels and the growth of new blood vessels (angiogenesis). They also increase vascular permeability and promote inflammatory responses (leukocyte and neutrophil infiltration). Interestingly, CRISPs in lamprey buccal gland secretions also manifest some of these activities, suggesting an evolutionarily conserved function. As we strive to better understand the functions that CRISPs serve in venoms, it is worth considering the broad range of CRISP physiological activities throughout the animal kingdom. In this review, we summarize those activities, known crystal structures and sequence alignments, and we discuss predicted functional sites. CRISPs may not be lethal or major components of venoms, but given their almost ubiquitous occurrence in venoms and the accelerated evolution of svCRISP genes, these venom proteins are likely to have functions worth investigating.


Assuntos
Proteínas de Répteis , Venenos de Serpentes , Animais , Cisteína , Evolução Molecular , Humanos , Ligação Proteica , Proteínas de Répteis/química , Proteínas de Répteis/genética , Proteínas de Répteis/toxicidade , Venenos de Serpentes/química , Venenos de Serpentes/genética , Venenos de Serpentes/toxicidade
16.
Methods Mol Biol ; 2068: 97-127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31576525

RESUMO

Studying animal toxin evolution requires sequences of these proteins and peptides, and transcript sequences allow for the construction of cladograms and evaluation of selection pressures from nonsynonymous and synonymous nucleotide mutation ratios. In addition, these translated sequences can be useful as custom databases for peptide identifications within venoms and for better proteomic quantification. Obtaining these transcripts is achieved by sequencing cDNA originating from venom gland tissue or venom. This chapter provides the methodology for (1) targeted sequencing of transcripts from a single venom protein family (RNA isolation and 3'RACE [rapid amplification of cDNA ends]), (2) generation of a venom gland transcriptome with next-generation sequencing (NGS) technology (de novo transcriptome assembly, toxin transcript identification, quantification, and positive selection analysis), and (3) combined high-throughput proteomics to identify secreted venom components. Transcriptomics has become fundamental for studying toxin evolution, but it creates many challenges for scientists who are unfamiliar with working with RNA, managing large NGS datasets and executing the required programs, particularly considering that there is an overabundance of available software in this field and not all perform optimally for venom gland transcriptome assembly. This chapter provides one pipeline for the integration of both low- and high-throughput transcriptomics with proteomics to characterize venoms.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteômica/métodos , Animais , Biologia Computacional/métodos , Transcriptoma/genética , Peçonhas/análise
17.
Annu Rev Anim Biosci ; 8: 91-116, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31702940

RESUMO

Snake venoms are primarily composed of proteins and peptides, and these toxins have developed high selectivity to their biological targets. This makes venoms interesting for exploration into protein evolution and structure-function relationships. A single venom protein superfamily can exhibit a variety of pharmacological effects; these variations in activity originate from differences in functional sites, domains, posttranslational modifications, and the formations of toxin complexes. In this review, we discuss examples of how the major venom protein superfamilies have diversified, as well as how newer technologies in the omics fields, such as genomics, transcriptomics, and proteomics, can be used to characterize both known and unknown toxins.Because toxins are bioactive molecules with a rich diversity of activities, they can be useful as therapeutic and diagnostic agents, and successful examples of toxin applications in these areas are also reviewed. With the current rapid pace of technology, snake venom research and its applications will only continue to expand.


Assuntos
Evolução Molecular , Venenos de Serpentes/química , Venenos de Serpentes/farmacologia , Animais , Genômica , Proteômica , Venenos de Serpentes/genética , Serpentes/genética , Transcriptoma
18.
J Proteomics ; 187: 223-234, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30092380

RESUMO

High-throughput technologies were used to identify venom gland toxin expression and to characterize the venom proteomes of two rear-fanged snakes, Ahaetulla prasina (Asian Green Vine Snake) and Borikenophis portoricensis (Puerto Rican Racer). Sixty-nine complete toxin-coding transcripts from 12 venom protein superfamilies (A. prasina) and 50 complete coding transcripts from 11 venom protein superfamilies (B. portoricensis) were identified in the venom glands. However, only 18% (A. prasina) and 32% (B. portoricensis) of the translated protein isoforms were detected in the proteome of these venoms. Both venom gland transcriptomes and venom proteomes were dominated by P-III metalloproteinases. Three-finger toxins, cysteine-rich secretory proteins, and C-type lectins were present in moderate amounts, but other protein superfamilies showed very low abundances. Venoms contained metalloproteinase activity comparable to viperid snake venom levels, but other common venom enzymes were absent or present at negligible levels. Western blot analysis showed metalloproteinase and cysteine-rich secretory protein epitopes shared with the highly venomous Boomslang (Dispholidus typus). The abundance of metalloproteinases emphasizes the important trophic role of these toxins. Comprehensive, transcriptome-informed definition of proteomes and functional characterization of venom proteins in rear-fanged snake families help to elucidate toxin evolution and provide models for protein structure-function analyses.


Assuntos
Colubridae/metabolismo , Metaloproteases/metabolismo , Proteômica/métodos , Venenos de Serpentes/análise , Venenos de Serpentes/metabolismo , Transcriptoma/fisiologia , Animais , Cromatografia Líquida , Colubridae/genética , Ensaios Enzimáticos , Metaloproteases/isolamento & purificação , Proteoma/análise , Proteoma/metabolismo , Venenos de Serpentes/química , Venenos de Serpentes/genética , Espectrometria de Massas em Tandem
19.
Proc Biol Sci ; 285(1884)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068680

RESUMO

Venom proteins evolve rapidly, and as a trophic adaptation are excellent models for predator-prey evolutionary studies. The key to a deeper understanding of venom evolution is an integrated approach, combining prey assays with analysis of venom gene expression and venom phenotype. Here, we use such an approach to study venom evolution in the Amazon puffing snake, Spilotes sulphureus, a generalist feeder. We identify two novel three-finger toxins: sulditoxin and sulmotoxin 1. These new toxins are not only two of the most abundant venom proteins, but are also functionally intriguing, displaying distinct prey-specific toxicities. Sulditoxin is highly toxic towards lizard prey, but is non-toxic towards mammalian prey, even at greater than 22-fold higher dosage. By contrast, sulmotoxin 1 exhibits the reverse trend. Furthermore, evolutionary analysis and structural modelling show highest sequence variability in the central loop of these proteins, probably driving taxon-specific toxicity. This is, to our knowledge, the first case in which a bimodal and contrasting pattern of toxicity has been shown for proteins in the venom of a single snake in relation to diet. Our study is an example of how toxin gene neofunctionalization can result in a venom system dominated by one protein superfamily and still exhibit flexibility in prey capture efficacy.


Assuntos
Colubridae/genética , Venenos de Serpentes/química , Venenos de Serpentes/toxicidade , Sequência de Aminoácidos , Animais , Evolução Biológica , Colubridae/metabolismo , Expressão Gênica , Lagartos , Camundongos , Conformação Proteica , Venenos de Serpentes/genética
20.
Semin Thromb Hemost ; 44(7): 691-706, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29954012

RESUMO

Venomous and hematophagous animals use their venom or saliva for survival, to obtain food, and for self-defense. Venom and saliva from these animals are cocktails of bioactive molecules primarily composed of proteins and peptides. These molecules are called toxins because they cause unwanted consequences on prey. They exhibit unique, diverse, and specific biological activities that perturb normal physiological processes of their prey and host. However, the potential of toxins as inspirations for the development of therapeutic agents or pharmacological tools has also long been recognized. In addition to their small size, the exquisite selectivity and structural stability of toxins make them attractive as starting molecule in the development of therapeutic and diagnostic agents. Drug discovery and development from venomous and hematophagous animals against cardiovascular diseases have been particularly successful. Some of the notable success include antihypertensive (captopril and enalapril) and antiplatelet agents (tirofiban and eptifibatide), as well as anticoagulants (lepirudin and bivalirudin). Highlighted in this review are many venom or saliva-derived cardiovascular-active proteins and peptides of therapeutic interest, including those that are currently in preclinical stages and those that have been approved by FDA and currently in the market. The authors attempt to summarize their structure, function, mechanism of action, and development with respect to cardiovascular diseases.


Assuntos
Anticoagulantes/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Descoberta de Drogas , Inibidores da Agregação Plaquetária/uso terapêutico , Peçonhas/uso terapêutico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA